
1. Introduction 

Microstimulation is a powerful tool for manipulating brain 

activity, but its drawbacks are sobering: electrode efficacy is 

variable, the cells being stimulated are rarely those being 

recorded from, and the number of independent electrodes 

is much smaller than the dimensionality of the systems 

being stimulated. In this pilot study, we show how a spiking 

network model can be used with optimal control to 

expedite the development of microstimulation protocols. 

2. Neural data & model 

Data were recorded from the somatosensory cortices of 

four anesthetized rats, with intrathalamic microstimulation 

as well as tactile stimulation (Fig. 1). The  simulation (Figs. 2–

3) consisted of 2000 spiking Izhikevich neurons [1] 

representing cortex and thalamus, with connectivities 

drawn from empirical data [2].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3. Optimization 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Summary 

 An adaptive descent algorithm was used to calibrate 

spiking network models to data from different rats. 

 To our knowledge, this is the first time spiking 

network models have been used to investigate 

differences from  tuned to individual rat brains. 

 Even with a small number of function evaluations, 

MPC used with individually calibrated models had 

consistently better performance than MPC trained 

on a generic model only. 

 Spiking network modeling may prove to be a useful 

tool in designing in vivo microstimulation protocols. 
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Fig. 3: Connectivity of the model, showing effective connectivity from rows to 

columns. Red = excitation, blue = inhibition; number = layer; E = excitatory; I = 

inhibitory; R = regular firing; B = bursting; F = fast-spiking; L = low-threshold 

spiking; TCR = thalamocortical relay; TRN = thalamic reticular nucleus. 
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Fig. 2: Layout of the model. The 28 efferent connections from a single 

thalamocortical relay neuron are shown (black lines). 

Fig. 1: (A) Natural flow of sensory information. (B) Sensation replaced by direct 

thalamic microstimulation. (C) Mechanical actuator delivering tactile stimuli. 
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4. Results 

 The model was calibrated to the experimental firing rates and local field potential spectra of each rat 

using just 50 function evaluations, requiring approximately 80 min.  of CPU time per subject (Fig. 5); 

10 – 1000 more iterations would be required to achieve an optimal fit. 

 Due to the efficiency of the linear model used with model predictive control (MPC), just 200 s of 

training data sufficient (Fig. 6). 

 A controller that was trained on pooled or generic data had poor performance compared to one 

trained on individual rats (Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Optimization was performed using Bayesian 

adaptive locally linear stochastic descent 

(BALLSD):  for an objective function 𝐸 =  𝑓 𝐱 , 
BALLSD varies a random parameter 𝑖  and 

evaluates 𝐸𝑘
± = 𝑓(𝐱 ± 𝛿(𝑖)). 

 If this step is an improvement, then BALLSD (1) 

accepts the new parameter, (2) increases the 

probability of selecting this parameter in future, 

and (3) increases the step size.  

Connection weights, stimulation amplitude, and 

background input rate were optimized. 
 

Fig. 4: Example of BALLSD. (A) Trajectories of BALLSD vs. 

traditional algorithms. Note the locally linear steps of BALLSD that 

rapidly adapt in size. (B) Relative error of each method, showing 

the initial stage of the algorithms. (C) Relative error for each 

method, showing the asymptotic stage of the algorithms. 

Fig. 5: Calibration of four different simulations to experimental data from four different rats using a small number of function 

evaluations. Calibrations are shown to firing rates (top) and local field potential spectra (bottom). 

Fig. 6: Accuracy of MPC as a function of data length. While 

accuracy continues to increase up even after 600 s of data, 98% of 

the accuracy can be attained with just 200 s of data.  

Fig. 7: Compared to MPC trained on a generic neural model the 

controller trained on rat-specific neural models had consistently 

greater accuracy when trained on individual-specific data. 
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